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Nonequilibrium size distributions of fluid membrane vesicles

Leonardo Golubovic´ and Mirjana Golubovic´
Department of Physics, West Virginia University, Morgantown, West Virginia 26506

~Received 26 December 1996!

We investigate nonequilibrium behavior of polydisperse ensembles of fluid membrane vesicles by means of
a diffusive Boltzmann transport equation that incorporates vesicle diffusion and reactions between vesicles.
This approach is used to study time evolutions of size distributions of initially monodisperse vesicle ensembles.
We investigate various nonequilibrium paths that ensembles of vesicles may follow during the equilibration
process. Depending on the initial size distribution of vesicles, the thermodynamic equilibrium may be reached
either via a fusional growth of vesicles, or via their fissional decay. In the former case, typical vesicle size
grows asR(t);t1/2 until it saturates to its equilibrium value, whereas in the latter case we find that vesicle size
decays in afinite timeproportional to@R(0)#1/3, whereR(0) is the initial vesicle size. The latter behavior is
related to the length scale dependence of membrane bending and saddle splay rigidity.
@S1063-651X~97!03109-7#

PACS number~s!: 68.15.1e, 05.40.1j, 82.70.Kj
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I. INTRODUCTION

In recent years significant attention has been devote
the equilibrium statistical mechanics of fluid membranes@1#,
and their phases@2–8#. However, many interesting phenom
ena involving membranes are nonequilibrium in nature.
technologically important example are liposomes, which
potential vehicles for transporting therapeutic and diagno
agents@9–11#. They are vesicles formed by bilayers conta
ing amphiphilic substances such as phospholipids dispe
in water. Vesicles such as liposomes frequently havenon-
equilibrium size distributions that evolve due to reactio
between vesicles. During storage, these reactions cause
sequent changes in the vesicles’ sizes and thus affect
internal aqueus volume~‘‘encapsulated volume’’!. On the
other side, inequilibrium, unilamellar vesicles may form iso
tropic, liquidlike polydispersedroplet phases, in which poly-
dispersity properties have been recently investigated exp
mentally by Herve` et al. @12#, and theoretically@5–8#. These
are so-called entropically stabilized vesicles, with the st
dard Helfrich-Evans membrane curvature free energy,

F5E dSFk2 H21k̄GG , ~1.1!

where H and G are, respectively, membrane mean a
Gaussian curvature, andk andk̄ are membrane bending an
saddle splay rigidity. Here we investigate various noneq
librium paths to reach the thermodynamic equilibrium
these vesicle phases starting from a nonequilibrium, mo
disperse distribution of vesicle sizes. We investigate n
equilibrium behavior of polydisperse ensembles of flu
membrane vesicles by means of a diffusive Boltzmann tra
port equation that incorporates vesicle diffusion and re
tions between vesicles. This approach is used to study
evolutions of vesicle size distributions and their interest
properties such as the internal aqueous, encapsulated
ume. We identify several types of possible nonequilibriu
behaviors. Depending on the initial size distribution
vesicles, the thermodynamic equilibrium may be reached
561063-651X/97/56~3!/3219~12!/$10.00
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ther via a fusional growth of vesicles, or via their fission
decay. In the former case, typical vesicle size grows
R(t);t1/2 until it saturates to its equilibrium value, wherea
in the latter case we find that vesicle sizes decay in afinite
time proportional to @R(0)#1/3, where R(0) is the initial
vesicle size. The latter behavior is related to the length sc
dependence of membrane bending and saddle splay rig
@13#. Here we study, primarily, the situations in which
liquidlike, dilute unilamellar vesicle phase is reached at lo
times in the equilibrium@12#. We address also the situation
in which one goes from a monodisperse state of unilame
vesicles in which the phosphopolipid amountexceedsthe
critical value for the transition, into a lamellar fluid mem
brane phase. Such a unilamellar vesicle state eventu
evolves into a lamellar phase~or into long lived metastable
states of multilamellar vesicles@14#!.

The layout of this paper is as follows. In Sec. II we fo
mulate our transport equation and discuss its general pro
ties. In Sec. III, we discuss various nonequilibrium paths
thermodynamic equilibrium starting from an initially mono
disperse ensemble of vesicles. In Sec. IV we discuss
results and related experimental work. Some important
tails are discussed in the Appendices A and B.

II. TRANSPORT EQUATION FOR REACTING VESICLES

A dilute nonequilibrium polydisperse ensemble of nea
spherical unilamellar vesicles can be described by a ves
densityr(A,x,t), such thatr(A,x,t)dAd3x is the number of
vesicles with areaA54pR2 in the interval (A,A1dA) con-
tained in a volume elementd3x. A vesicle of areaA is free
to diffuse and undergo fusions with other vesicles or to s
into smaller vesicles. Thus, the vesicle ensemble is
diffusion-reaction system where reactions are vesicle fus
and fission processes~see Fig. 1! preserving the total area o
the vesicles~i.e., total amount of the membrane materia!.
Here we are primarily interested in dilute vesicle sta
~‘‘droplet gasses’’! in which the encapsulated volume fra
tion is much smaller than 1. Thus, the time evolution
r(A,x,t) can be described by a diffusive Boltzmann tran
3219 © 1997 The American Physical Society
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port equation~TE! of the form

]

]t
r~A,x,t !5D~A!Dxr~A,x,t !1Ra~r!

1Rb~r!1Rc~r!1Rd~r!, ~2.1!

where the first term is an ordinary diffusion term with th
size dependent diffusion constant D(A)
5kBT/6ph(A/4p)1/2, according to the Einstein-Stokes law
with h the viscosity of the solvent.Ra to Rd in Eq. ~2.1! are
reaction terms associated with the reactions in Fig. 1@fusions
~a! and ~b!, and fissions~c! and ~d!#. If r(A,x,t) is slowly
varying in space, these terms can be generally written in
form

Ra~r!522E
0

`

dA1 G~A1 ,A!r~A1 ,x,t !r~A,x,t !,

~2.2a!

Rb~r!5E
0

A

dA1 G~A1 ,A2A1!r~A1 ,x,t !r~A2A1 ,x,t !,

~2.2b!

Rc~r!52E
0

`

dA1 P~A1 ,A!r~A1A1 ,x,t !, ~2.2c!

Rd~r!52E
0

A

dA1 P~A1 ,A2A1!r~A,x,t !. ~2.2d!

Reaction kernelsG and P in Eqs. ~2.2! are related by the
detailed balance between fusions in Fig. 1~a! and fissions in
1~c! @fusions in~b! and fissions in~c!# in the thermodynamic
equilibrium. This gives the condition

P~A1 ,A2!5
req~A1!req~A2!

req~A11A2!
G~A1 ,A2!, ~2.3!

wherereq(A) is the equilibrium density. For example, for th
entropically stabilizedvesicles@5,6#

FIG. 1. Reactions between vesicles corresponding to the te
Ra to Rd of the transport equation~2.1!.
e

req~A!5
C

A5/2 S A

Amin
D 4/3

e2A/Aeq, ~2.4!

whereasreq(A)'0 for A,Amin . HereAmin is the area of the
minimum-size vesicles@6#. Dimensionless constantC in Eq.
~2.4! is

C5const3S k

kBTD 2

expF2
E~Amin!

kBT G , ~2.48!

where E(Amin)58pk14pk̄ is the curvature free energy o
the minimum-size vesicles@6#. At low enoughT, for 22k
,k̄ ~as assumed hereafter!, C!1. The power-law prefactor
(A/Amin)

4/3 in req of Eq. ~2.4! arisis from the dependence o
the membrane curvature rigiditiesk and k̄ on vesicle size
@13#. The prefactorA25/2 in Eq. ~2.4! originates from the
entropy of vesicle’s collective modes@5,6#. Aeq in Eq. ~2.4!
is, effectively, the area of the largest vesicles present in
system. It is determined by the total amount of the membr
material, i.e., total membrane area

Atot5E d3x dA Ar~A,x,t ! ~2.5!

present in the system. Vesicle fusion and fission proces
included in our TE~2.1! preserveAtot and drive the density
r(x,A,t) towards the equilibrium density~2.4! at long times.
We remark that the actual value ofAeq in Eq. ~2.4! does not
explicitly enter the TE~2.1! @see Eqs.~2.3! and ~2.4!#.

To close the transport theory, we now discuss the form
the reaction kernelG in Eqs.~2.2!. To this end, consider the
process in Fig. 1~a!, represented by the rate in Eq.~2.2a!. The
quantity G(A1 ,A)r(A1)dA1 is the inverse of the averag
time t(A1 ,A) it takes for a vesicle of areaA to encounter
vesicles with areas in the interval (A1 ,A11dA1) and fuse
with one of them. Let us first estimate the number of the
encountersN(t) during the time intervalt. During an en-
counter, the vesicles are as close asR1R15(AA
1AA1)/(4p)1/2. Thus, N(t)5V(t)r(A1)dA1 , where V(t)
is the volume swept in space by a sphere of radiusR1R1
diffusing with the diffusion constantD(A,A1)5D(A)
1D(A1) ~‘‘relative’’ diffusion constant for the diffusion of
A1 in the reference frame comoving withA!. The volume
V(t) can be estimated asV(t)'(4p/3)(R1R1)3(t/t1),
where t15(R1R1)2/2D(A,A1) ~the time it takes for the
sphere to diffuse over the distance equal to its radius!. Thus,
N(t)'(R1R1)D(A,A1)tr(A1)dA1 is the number of the en
counters of the vesicle of areaA with vesicles with areas in
the interval (A1 ,A11dA1). If pfus is the probability that an
encounter between the vesicles leads to a fusion, the ave
time t(A1 ,A) it takes for a fusion to occur satisfie
pfusN„t(A1 ,A)…'1. By using this, andG(A1 ,A)r(A1)dA1
51/t(A1 ,A), we find that G(A1 ,A)'pfus@D(A1)
1D(A)](R11R). By using here the Einstein-Stokes for
for D(A), we find

G~A1 ,A!'pfus

kBT

h F21S A

A1
D 1/2

1S A1

A D 1/2G . ~2.6!

s
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56 3221NONEQUILIBRIUM SIZE DISTRIBUTIONS OF FLUID . . .
This equation completes our transport theory, Eqs.~2.1! to
~2.6!. It describes dynamics of dilute ensembles of vesic
for which the encapsulated volume fraction,

FV~x,t !5
1

3~4p!1/2 E dA A3/2r~A,x,t !, ~2.7!

is small. We may thus study equilibration processes in wh
the dilute equilibrium vesicle phase is reached at long tim
Moreover, as discussed in Sec. III, we can also address
teresting situations in which one starts from a dilute (FV
,1) monodisperse state of unilamellar vesicles in which
phosphopolipid amountexceedsthe critical value for the
transition into a lamellar fluid membrane phase@12#. Such
unilamellar vesicle states eventually evolve into the lame
phase~or into long lived metastable states of multilamell
vesicles!.

Thus, we are here interested in situations in which
equilibrium state reached at long times is either the dro
~dilute vesicle! phase or the lamellar phase. This correspo
to the so-called ‘‘droplet regime’’ of the fluid membran
phase diagram@7,8#. This regime occurs for the saddle-spla
~Gaussian! rigidity constant k̄ in the range 22k,k̄,
2 10

9 k @7,8#. In the droplet regime, the cutoff area scaleAeq
in Eq. ~2.4! reaches its maximum value

~Aeq!max'
Amin

C3/4 ~2.8!

at the transition from the droplet to the lamellar phase@7,8#.
At this transition, the encapsulated volume fraction is of
order of one~close packing of spheres!. In the droplet re-
gime, the formation of passages between droplets is, ge
ally, energetically disfavored. Likewise, formation of dro
lets with nonspherical, multiply connected topologies
disfavored in the droplet regime. This regime involv
phases with simple membrane topologies such as the dro
and the lamellar phase. On the other hand, beyond
present work is the so-called ‘‘passage regime,’’ which o
curs for the saddle-splay rigidity constantk̄ in the range
2 10

9 k,k̄,0 @7,8#. There passage formation and nonsphe
cal membrane topologies are energetically favored. T
yields more complex phase equilibria involving, in additio
to the lamellar and droplet phase, complex states suc
infinite periodic minimal surfaces and sponge phases.

Various complex processes involved during the fusion
two vesicles are all absorbed into a single reaction cons
pfus in Eq. ~2.6!. Membrane fusion has the character of
nucleation process whose rate is limited by a nucleation
ergy barrierEb , i.e., pfus;exp(2Eb /kBT). Fusion involves
formation of complexnonbilayer intermediates that eventu
ally yield formation of a small passage~catenoidal neck!
connecting vesicles~as recently reviewed in Ref.@15#!. The
actual nucleation transition state~i.e., the transition saddle
point in the energy landscape! is, most likely, a nonbilayer
intermediate state of the fusion. It is thus hard to sim
relate the energy barrierEb to common bilayer parameter
such as the elastic constantsk and k̄. Nonetheless, as mem
brane fusion eventually yields formation of a bilayer stru
ture involving two vesicles connected by a small pass
with an energyEpass, the inequalityEb.Epass must apply.
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Epass can be estimated from the standard Helfrich-Eva
elastic model~1.1! yielding Epass'24pk̄ if the passage
neck radius is much smaller than the vesicle size@16#. Thus,
within the standard model~1.1!, Epass'4puk̄u for k̄,0.
However, as the typical neck radius is small for passages
emerging from vesicle fusion, the standard curvature ene
model ~1.1! should be corrected here by higher order ter
in powers of curvatures@16,17#. These energy corrections ar
likely to be positive@17#. Thus Epass.4puk̄u for k̄,0. As
Eb.Epass, one arrives at the inequalityEb.4puk̄u for k̄,0.
By using this we establish anupper boundfor the reaction
constantpfus;exp(2Eb /kBT) of the formpfus,pmax, with

pmax;exp~24puk̄u/kBT! ~2.9!

for k̄,0.
We emphasize that the total membrane area~2.5! is the

only conserved quantity. Other quantities, such as the n
ber of vesicles and the encapsulated volume, change du
reactions between vesicles. We assume that these reac
are rare events~i.e., thatpfus is small! so that the time inter-
vals between them are long enough to allow vesicles to
cover nearly spherical shapes by permeation of the solv
through membranes.

Finally, we remark that the transport equation~2.1! can be
put into a dimensionless, parameter-free form by introduc
the dimensionless quantitiesÃ5A/@A#, r̃5r/@r#, t̃
5t/@ t#, and x̃5x/@x#, where@A#5Amin , @r#5C/Amin

5/2 , @ t#
5Amin

3/2 /CG0 , and @x#5(Amin /Cpfus)
1/2; here G0

5pfuskBT/h. This representation is convenient for prese
ing results obtained by numerically solving the transp
equation~2.1! @see Sec. III and figures discussed therein#. By
Eq. ~2.48!,

@ t#5const3
hkBTAmin

3/2

k2 ~pfus!
21 expS 4p~2k1k̄ !

kBT D .

~2.10!

By using the upper bound~2.9! for the reaction constantpfus
one obtains from Eq.~2.10! a lower boundestimate for the
time scale@ t# of the form @ t#.@ t#min , with

@ t#min;
hkBTAmin

3/2

k2 expS 8pk

kBT D ~2.11!

for k̄,0. Note that the time scale@ t#min doesnot depend on
the value of the saddle-splay rigidityk̄.

III. EVOLUTION OF INITIALLY
MONODISPERSE VESICLES

A. Characteristic concentrations of vesicles

Here we discuss evolution of a spatially uniform, initial
monodisperse ensemble of vesicles. Letn0 be the number
density of these vesicles that all, att50, initially have the
same areaA0 . Thus

r~A,x,t !u t505n0d~A2A0!. ~3.1!
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Here we will introduce several characteristic scales for
initial vesicle concentrationn0 . The TE~2.1! will drive r to
an equilibrium distribution of the form~2.4! with Aeq deter-
mined by the conservation ofAtot , Eq. ~2.5!. This conserva-
tion law givesAeq through the equation

FA5n0A05E dA Areq~A! ~3.2!

~whereFA is membrane area per unit volume!, yielding

Aeq5S FAAmin
4/3

C D 6/5

5A0S n0

n0*
D 6/5

, ~3.3!

with

n0* 5
C

Amin
4/3 ~A0!21/6. ~3.38!

The volume fraction encapsulated by vesicles,

FV~ t !5
1

3~4p!1/2 E dA A3/2r~A,t !, ~3.4a!

and the number of vesicles per unit volume,

nv~ t !5E dA r~A,t !, ~3.4b!

evolve from their initial valuesFV(0)5@1/3(4p)1/2#n0A0
3/2

andnv(0)5n0 , to their equilibrium values

FV~`!5FV,eq

5
Amin

4/5FA
8/5

C3/5

5
Amin

4/5 ~n0A0!8/5

C3/5

5FV~0!S n0

n0*
D 3/5

, ~3.5!

and

nv~`!5nv,eq

5
6C

Amin
3/2 F12S Amin

Aeq
D 1/6G

5
6C

Amin
3/2 F12S C

n0A0Amin
1/2 D 1/5G . ~3.6!

Above and hereafter, we assume that membrane area de
FA5n0A0 is well above thecritical large vesicle concentra-
tion ~clvc!,

FA,clvc5n0,clvcA0'
C

Amin
1/2 . ~3.7!

This ensures thatAeq@Amin : note that, by Eq.~3.3!,
e

sity

Aeq

Amin
'S FA

FA,clvc
D 6/5

. ~3.78!

Thus, for FA.FA,clvc , one has, in equilibrium, large en
tropically stabilized vesicles with a broad, power-law dist
bution of sizes in the range betweenAmin and Aeq @see Eq.
~2.4!#. For FA.FA,clvc the encapsulated volume fractio
FV,eq is a nonlinear function of the membrane area densi
~i.e., surfactant volume fraction!, as, by Eq. ~3.5!, FV

;FA
8/5 in equilibrium. On the other hand, forFA,FA,clvc

two qualitatively different situations can emerge in equili
rium: ~i! If FA,clvc.FA.FA,cvc, whereFA,cvc corresponds
to the more common critical vesicle concentration@18#, one
has self-assembling of essentially monodisperse vesi
with A'Amin . Thus, in this range ofFA , the volume frac-
tion occupied by vesicles is simply proportional to the s
factant volume fractionFV;FA in equilibrium. ~ii ! If FA
,FA,cvc there are no vesicles present in the equilibriu
Rather, there one has isolated surfactant molecules~and,
maybe, their nonbilayer aggregates!.

In what follows, our primary focus will be on vesicl
states that occur above the critical large vesicle concen
tion, FA.FA,clvc . Only then one has, in thermodynam
equilibrium, strongly polydisperse vesicle size distribution
the power-law form sincereq(A);A27/6, for A between
Amin and Aeq @see Eq.~2.4!#. We remark that the encapsu
lated volume fractionFV,eq,1 throughout the fluidlike
vesicle phase, whereasFV,eq'1 at the first order transition
from the vesicle to the lamellar phase@7,8#. Thus, by Eq.
~3.5!, at the transition,

FA,crit5n0,critA0'
C3/8

Amin
1/2 , ~3.8!

whereas, by~3.78! and ~3.8!, Aeq5(Aeq)max5Amin/C
3/4. For

a given initial vesicle sizeA0 , previous equations definefour
characteristic scales for theinitial density of vesicles,n0 .
They aren0,clvc in Eq. ~3.7!, n0* in Eq. ~3.38!, n0,crit in Eq.
~3.8!, andnv,eq in Eq. ~3.6!. Finally, asFV(0),1, one has
n0,n0,max, where

n0,max'
1

A0
3/2 ~3.9!

is the fifth characteristic density scale forn0 . The existence
of several characteristic scales forn0 implies the existence o
several types of equilibration behaviors discussed in the
lowing. In Fig. 2 we plot these five characteristic densities
the (A0 ,n0) plane. Note that forA0.Amin , one hasnv,eq

.n0* .n0,clvc. Also note that forA,(Aeq)max5Amin/C
3/4

@see Eq.~2.8!#, one hasn0,max.n0,crit.n0* in Fig. 2. For any
n0,n0,crit the final state is the equilibrium vesicle phase. O
the other hand, forn0 in the rangen0,crit,n0,n0,max, ini-
tially dilute vesicle ensembles transform, at long times, in
the equilibrium lamellar phase. In this case the encapsula
volume fractionFV grows, starting from an initial value
smaller than 1, until it reaches the close packing limitFV
'1. At that time scale transformation into a multilamell
vesicle state occurs~as detailed below!.
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56 3223NONEQUILIBRIUM SIZE DISTRIBUTIONS OF FLUID . . .
B. Type I equilibration

Here the initial vesicle density is above its equilibriu
value, n0.nv,eq. Then, also,n0.n0* ~see Fig. 2!, and, by
Eqs.~3.3! and~3.5!, A0,Aeq, andFV(0),FV,eq. Thus, the
equilibration must be dominated by vesicle fusion proces
@Ra andRb terms of the TE~2.1!#, which decreasethe num-
ber density of vesiclesnv(t), and, as

A1
3/21A2

3/2,~A11A2!3/2,

increase the encapsulated volume fractionFV(t). This is
documented in Fig. 3, obtained by numerically solving t
TE ~2.1! for the initial r in the form of a narrow Gaussia
centered atA0 ~see Fig. 4 att50!. We see from Fig. 3 tha
FV(t) grows ast1/2 until it saturates to its equilibrium valu
FV,eq at times longer than some equilibration time sc
teq. This growth can be understood analytically as, fot
!teq, fusional terms dominate in the TE~2.1!, i.e.,

]

]t
r~A,t !'Ra~r!1Rb~r!. ~3.10!

As discussed in Appendix A, this equation has a self-sim
solution of the form

r~A,t !5
FA

@A~ t !#2 F* S A

A~ t ! D ~3.11!

@with *dz zF* (z)51#, characterized by a growing vesic
area scale

A~ t !5A~0!1FAG0t, ~3.12!

with G05pfuskBT/h, and A(0)'A0 . Thus, for t!teq, the
typical vesicle radius grows as

R;@A~ t !#1/2;t1/2, ~3.13!

FIG. 2. Regions of the three equilibration types~I, II, and I-II!
of an initially monodisperse ensemble of vesicles with the ini
concentrationn0 and areaA0 ; here @nv#5C/Amin

3/2 , whereas for
(Aeq)max see Eq.~2.8!. Type I is abovenv,eq, type I-II is between
nv,eq and n0* , and type II is betweenn0* and n0,clvc. For n0

,n0,crit , the final state is the dilute vesicle phase. On the other s
for n0 in the rangen0,crit,n0,n0,max, initially dilute vesicle en-
sembles transform, at long times, into the equilibrium lame
phase.
s

r

FIG. 3. Example of the type I equilibration. Here and in th
following figures, t̃5t/@ t#, F̃V( t̃)5FV(t)/@FV#, and ñv( t̃)
5nv(t)/@nv#, with @ t#5Amin

3/2 /CG0 , @FV#5C, and@nv#5C/Amin
3/2 .

In this example Ã05A0 /Amin55, and ñv(0)5n0 /@nv#560,
whereas the initial distribution is a narrow Gaussian centered
A0 .

l

e,

r

FIG. 4. For the example of the type I equilibration in Fig. 3, w
plot r̃5r/@r# vs Ã5A/Amin for various times in the interval 0, t̃
,0.040, early evolution. Here and in the following figures,@r#
5C/Amin

5/2 .
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3224 56LEONARDO GOLUBOVIĆ AND MIRJANA GOLUBOVIĆ
whereas

FV~ t !5const3FA@A~ t !#1/2;t1/2 ~3.14!

and

nv~ t !5const3
FA

A~ t !
;t21. ~3.15!

See Appendix A. Fort'teq, the area scaleA(t) reaches
Aeq, A(teq)'Aeq, or, equivalently,FV(teq)'FV,eq. This,
combined with Eqs.~3.12! and ~3.3!, yields

teq5const3
Amin

8/5

C6/5G0
~FA!1/5. ~3.16!

Thus,

teq;~FA!1/5;~n0A0!1/5 ~3.168!

for n0,n0,crit , i.e., FA,FA,crit , when the equilibrium state
reached at long times is the dilute unilamellar vesicle ph
~see Fig. 2!. In terms of the dimensionless quantities d
cussed at the end of Sec. II,

t̃eq5
teq

@ t#
5const3~ ñ0Ã0!1/5, ~3.1688!

where Ã05A0 /Amin , and ñ05n0 /@nv#, with @nv#
5C/Amin

3/2 .
On the other hand, if the initial vesicle densityn0

.n0,crit , the equilibrium state is the lamellar phase a
vesicles will evolve via fusions until the encapsulated v
ume fraction becomesO(1). Thus, the encapsulated volum
fractionFV grows, starting from an initial value smaller tha
1, until it reaches the close packing limitFV'1. At that time
scale, concentrated unilamellar vesicles will transform i
multilamellar long lived vesicles~corresponding to confoca
defects of a smectic-A phase!, as suggested by Simons an
Cates@14#. Thus, the equilibration time scale~from dilute to
concentrated vesicle state! can be estimated from
FV(teq)'1, yielding, by Eqs.~3.14! and ~3.12!,

teq5const3
1

G0
~FA!23 ~3.17!

for FA.FA,crit . By Eqs.~3.16! and ~3.17!, teq has a maxi-
mum for FA'FA,crit , i.e., at the first order transition from
the droplet to the lamellar phase at which

~ teq!max'
Amin

3/2

C9/8G0
5

@ t#

C1/8, ~3.18!

An interesting feature of the equilibration time scalesteq in
Eqs. ~3.16! and ~3.17! is that they depend on the initia
vesicle densityn0 and areaA0 only through their product
n0A05FA .

Figures 4 and 5 give time evolution of the vesicle dist
bution r(A,t) during the type I equilibration@the corre-
spondingFV(t) andnv(t) are in Fig. 3#. Figure 4 gives early
evolution of r(A,t) starting from a Gaussian centered
A055Amin . We see that fusions quickly produce anoth
e
-

-

o

t
,

weaker peak atA510Amin . Higher order peaks~third, etc.!
are smeared and not observable here. In Fig. 4 we see
the emerging peak atA50, which is produced by fissions
Fissions, however, only weakly affect the dynamics
FV(t) and nv(t) for t,teq. Figure 5 gives evolution of
r(A,t) over a broader range ofA and t. In the log-log rep-
resentation of Fig. 5 it is manifest that the main changes or
are in the range of largeA wherer is relatively small. Still,
such changes are sufficient to produce a significant varia
of FV(t) andnv(t) in Fig. 3 before equilibrium is reached

C. Type II equilibration

Here the initial vesicle densityn0 is in the rangen0,clvc

,n0,n0* ~then, also,n0,nv,eq, see Fig. 2!. Then, by Eqs.
~3.3! and ~3.5!, A0.Aeq, and FV(0).FV,eq. Thus, the
equilibration must be dominated by vesicle fission proces
@Rc andRd terms of the TE~2.1!#, which increase the num
ber density of vesiclesnv(t), and, as A1

3/21A2
3/2,(A1

1A2)3/2, decrease the encapsulated volume fractionFV(t).
This is documented in Fig. 6, obtained by numerically so
ing the TE~2.1! @r(A,t50) is a Gaussian centered atA0#.
We see thatFV(t) decreases, whereas the vesicle dens
nv(t) increases, until they saturate to their equilibrium valu
at times longer than some equilibration time scaleteq. De-
tails of this behavior can be understood analytically as,
t!teq, fissional terms dominate in the TE~2.1!, i.e.,

]

]t
r~A,t !'Rc~r!1Rd~r!. ~3.19!

By analyzing this equation~see Appendix B!, we find that an
initially monodisperse size distribution gets replaced by
transient strongly polydisperse distribution of the form

FIG. 5. The same as in Fig. 4 but in log-log scales and in
broader time interval 0, t̃,0.28.
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r;
1

A11/6 ~3.20!

for A,A(t), andr'0, for A.A(t). Such a transient behav
ior of r(A,t) is documented also by the numerical soluti
of the TE ~2.1!; see Fig. 7. In Appendix B we find that th
time dependent cutoff area scaleA(t) decays to zero as

A~ t !5A0F12
t

teq
G6

, ~3.21!

with

teq5const3
Amin

4/3

CG0
A0

1/6. ~3.22!

Thus, for the type II equilibration, the equilibration tim
scale behaves as

teq;~A0!1/6;~R0!1/3. ~3.228!

So, the equilibration is dominated by the fissional decay
vesicles, which occurs in afinite timeproportional toR0

1/3,
whereR0 is the initial vesicle size, as detailed in Append
B. The above transient form ofr(A,t), Eq. ~3.20!, as well as
the form of teq in Eq. ~3.22!, are consequences of the pa
ticular form of the equilibrium vesicle distributionreq(A),
Eq. ~2.4!, which enters the fissional part of the TE~2.1! due
to the detailed balance condition~2.3!. Thus, Eqs.~3.20! to
~3.22! reflect the length scale dependence of membr

FIG. 6. Example of the type II equilibration. HereÃ05100, and
ñv(0)5n0 /@nv#50.042, whereas the initial distribution is a narro
Gaussian centered atA0 .
f

e

bending and saddle splay rigidity on the vesicle size@13#, as
well as entropy of vesicle collective degrees of freedom
corporated inreq, Eq. ~4! @5,6#. In terms of the dimension-
less quantities discussed at the end of Sec. II, Eq.~3.22!
assumes the simple form

t̃eq5
teq

@ t#
5const3~Ã0!1/6, ~3.2288!

with Ã05A0 /Amin .

D. Type I-II equilibration

Here the initial vesicle densityn0 is betweenn0* andnv,eq

(n0* ,n0,nv,eq); see Fig. 2. By numerically solving the TE
~2.1!, we obtainFV(t) andnv(t) in Fig. 8. Asn0,nv,eq, the
vesicle densitynv(t) increases until it saturates tonv,eq. In
this respect, this equilibration is similar to type II equilibr
tion. As there, this increase ofnv(t) is produced here by the
fissional terms of the TE~2.1!. However, asn0* ,n0 here,
one has, by Eqs.~3.3! and ~3.5!, A0,Aeq and FV(0)
,FV,eq. Thus, the encapsulated volume fractionFV(t) in-
creases until it saturates toFV,eq. In this respect, this equili-
bration is similar to the type I equilibration. As there, th
increase ofFV(t) is produced here by the fusional terms
the TE ~2.1!. From Fig. 8, we see that the fissional increa
of nv(t) produces anovershootabove the equilibrium value
yielding a maximum ofnv(t) at some characteristic tim
scalet1 . For t,t1 , the fission produced vesicles are sma
and do not significantly affect the encapsulated volume fr
tion, which continuously increases~see Fig. 8!, due to fu-
sions of the largest vesicles, which contribute most toFV .

FIG. 7. For the example of the type II equilibration in Fig. 6 w
give log-log plots ofr̃ vs Ã for various times in the interval 0, t̃
,0.72.
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Fusions, however, affect the number density of vesiclesnv
significantly less. For example, after the overshoot innv at
t5t1 ~Fig. 8! there is only a small decrease ofnv(t), which
is due to fusions of the largest vesicles in the tail of t
distribution. Thus, most of the production ofnv is due to
fissions and it is practically over already at the fissional ti
scalet;t1'(Amin

4/3 /CG0)A0
1/6, as in the type II equilibration

Eq. ~3.22!. At this time scale, fusions still go on and increa
FV ; see Fig. 8. Thus, theultimate equilibration timeteq is
determined by fusions.teq is thus given by the fusional time
scale teq5(Amin

8/5 /C6/5G0)(FA)1/5, as in type I equilibration,
Eq. ~3.16!. This teq is larger than the fissional time scalet1 as
t1 /teq'(n0* /n0)1/5,1 here. This applies forn0,n0,crit when
the equilibrium state is the dilute vesicle phase. On the o
hand, forn0.n0,crit , the type I-II equilibration ends in the
phase of multilamellar vesicles~see Fig. 2!. In this caseteq is
given by Eq.~3.17!. Thus, in general, the dependence of t
equilibration time onn0 and A0 is the same for type I and
type I-II regimes.

IV. SUMMARY AND DISCUSSION

To summarize, we investigated nonequilibrium behavi
of polydisperse ensembles of fluid membrane vesicles
means of a diffusive Boltzmann transport equation that
corporates vesicle diffusion and reactions between vesic
This approach is used to study time evolutions of size dis
butions of initially dilute, monodisperse ensembles
vesicles. We identified several types of possible nonequ
rium behaviors. Depending on the initial size distribution
vesicles, the equilibration is dominated either by a fusio

FIG. 8. Example of the type I-II equilibration. HereÃ0520 and
ñv(0)51.6, whereas the initial distribution is a narrow Gauss
centered atA0 .
e

er

s
y
-
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f
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f
l

growth of vesicles~type I equilibration!, or by their fissional
decay ~type II equilibration!, or by a combination of both
~type I-II equilibration!. Here we studied, primarily, the situ
ations in which a dilute, liquidlike dilute monolamella
vesicle phase is reached at long times in the equilibrium.
addressed also the situations in which one starts from
monodisperse state of unilamellar vesicles in which the s
factant amount exceeds the critical value for the transit
into a lamellar fluid membrane phase. Such a dilute un
mellar vesicle state eventually evolves into a lamellar ph
~or, in practice, into long lived metastable states of multi
mellar vesicles!.

Vesicle size distributions were studied in more detail
the experiments of Herve` et al., both in the dilute and in the
concentrated~multilamellar! regimes@12#. Interestingly, the
dilute phase does not show behavior in agreement with
equilibrium size distribution~2.4!, which was rigorously de-
rived in the recent work of Morse and Milner@6#. The dis-
crepancy between the theory and the experiment remains
resolved~see Ref.@6# for a discussion of this problem!. In
brief, strongly polydisperse behavior of Eq.~2.4!, with req
;A27/6, for A betweenAmin and Aeq, was not observed in
the experiments of Herve` et al. Rather, the potentialAeq ap-
pears to be only few times bigger than the observedAmin ,
and the size distribution behaves, qualitatively, as a mo
disperse distribution throughout the dilute vesicle phase.
example, Herve` et al. find FV;FA , as in a monodisperse
state, rather thanFV;FA

8/5 as in Eq.~3.5!. Here we wish to
suggest that the size distribution they observed in the di
vesicle phase might not be the true equilibrium distributio
In fact, whereas the self-assembling of vesicles withA
;Amin may be a fast process~above the critical vesicle con
centration!, the subsequent growth of large vesicles withA
;Aeq can be avery slowprocess. This process must proce
via vesicle fusions, i.e., through the type I equilibration d
cussed in Sec. III. Note that the typical time scale for vario
equilibration types is@ t#, Eq.~2.10! @see Eqs.~3.169!, ~3.18!,
and ~3.229!#. In Sec. II we find that@ t#.@ t#min with @ t#min
given by Eq.~2.11! ~for k̄,0!. For T5300 K, Eq. ~2.11!
yields the practical estimate

@ t#min;1022 s3S kBT

k D 2 h

hw
S Rmin

100 nmD 3

~8.2231010!k/kBT,

~4.1!

wherehw is the viscosity of water at 300 K andRmin is the
radius of the minimum-size vesicles.Rmin'20 nm in the ex-
periments of Herve´ et al. @12#. Thus, for a moderately stiff
membrane, with k5kBT, Eq. ~4.1! would predict @ t#
;107 s;100 d. Herve` et al. suggest an even biggerk
54kBT, as obtained by independent measurements on
ented samples in the lamellar phase@12#. With such ak, Eq.
~4.1! would yield a value of@ t# exceeding many orders in
magnitude the age of the Universe. If so, fusions produc
large vesicles withA;Aeq, starting from the initial vesicles
with A;Amin , would never occur on the experimental tim
scale. The waiting time for the power-law distributionreq
;A27/6 (Amin,A,Aeq) to develop is simply too long. Thus
on the experimental time scale, the vesicle distribution
mains practically monodisperse withA;Amin . In fact, this
corresponds exactly to what Herve` et al. observethroughout
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their dilute vesicle phase. Thus, we believe that the dil
vesicle state studied in Ref.@12# could be very far from the
true equilibrium state. This explains the difference betwe
the observations of these experiments and the theoretical
dictions based on the equilibrium statistical mechanics.
least, the above discussion suggests that one should be
careful in interpreting experimental data on membrane
sembles by using results of the equilibrium theory of fluc
ating surfaces. Nonequilibrium effects may dominate even
seemingly simple states such as the dilute vesicle stat
which dynamics has been studied in this paper.
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APPENDIX A

Here we discuss the fusion-dominated diffusive Bol
mann equation

]

]t
r~A,t !5Ra~r!1Rb~r!, ~A1!

which is of interest for understanding the type I behavior
Sec. III. To discuss Eq.~A1!, let us make the change o
variables

r~A,t !5
FA

A~ t !2 FS A

A~ t !
,t D5

FA

@A~ t !#2 F~z,t ! ~A2!

and

z5
A

A~ t !
. ~A3!

Here A(t) is a time-dependent vesicle area scale~to be de-
termined in the following!. This change transforms Eq.~A1!
into

A~ t !
]F~z,t !

]t
1

dA~ t !

dt F22F~z,t !2z
]F~z,t !

]z G
5FAG0@R̃a~F !1R̃a~F !#, ~A4!

with G05pfuskBT/h, and

R̃a~F !522E
0

`

dz1 G̃~z1 ,z!F~z1 ,t !F~z,t !, ~A5!

R̃b~F !5E
0

z

dz1 G̃~z1 ,z2z1!F~z1 ,t !F~z2z1 ,t !, ~A6!

with G̃(z1 ,z)521(z/z1)1/21(z1 /z)1/2. Equation~A4! has a
time-independent solutionF(z,t)5F* (z), provided

dA~ t !

dt
5FAG0 , ~A7!

i.e.,

A~ t !5A~0!1FAG0t, ~A8!
e

n
re-
t
ery
-

-
in
in

-

so that, by Eq.~A4!, F* (z) satisfies

22F* ~z!2z
]F* ~z!

]z
5R̃a~F* !1R̃b~F* !. ~A9!

F* (z) yields a self-similar solution of Eq.~A1! of the form

r~A,t !5
FA

A~ t !2 F* S A

A~ t ! D , ~A10!

For this solution, by Eq.~A8! the typical vesicle size,R
;A(t)1/2, grows as t1/2, whereas, by~A10!, ~3.4a!, and
~3.4b!,

FV~ t !5c1FA@A~ t !#1/2;t1/2, ~A11!

with c15@1/3(2p)1/2#*dz z3/2F* (z), and

nv~ t !5c2

FA

A~ t !
;t21, ~A12!

with c25*dz F* (z). In terms of the ‘‘proper time’’

t5E
0

t

dt8
FAG0

A~ t8!
5 lnS 11

FAG0t

A~0! D , ~A13!

Eq. ~A4! assumes the parameter-free form

]F~z,t!

]t
1F22F~z,t!2z

]F~z,t!

]z G5R̃a~F !1R̃a~F !,

~A14!

whoset-independent solution satisfies Eq.~A4!. Equations
~A8!–~A12! explain numerical results we find in Sec. III fo
the type I behavior. They reflect general features of fusi
dominated behaviors as~i! there exists time-independent s
lution of Eq. ~A14!, i.e., Eq.~A9! has a solution forF* (z),
and ~ii ! this solution is a global attractor~a universal distri-
bution shape function! for all other solutions, e.g., initially
nearly monodisperse distributions. We checked~i! and~ii ! by
numerically solving Eq.~A14! for the initial distributions
having the form of a Gaussian peaked around a nonzerz.
We find that, for larget, F(z,t) approaches a limiting dis
tribution F* (z). We find thatF* (z) has an exponential tai
for largez, whereas it approaches a finite~nonzero! value as
z→0.

APPENDIX B

Here we discuss the fission-dominated diffusive Bol
mann equation

]

]t
r~A,t !5Ra~r!1Rb~r!, ~B1!

which is of interest for understanding the type II equilibr
tion behavior. Equation~B1! can be rewritten as

]

]t
r~A,t !5g E

0

`

dA8 L~A,A8!r~A8,t !, ~B2!

with g5CG0 /Amin
4/3 , and
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L~A,A8!52u~A82A!p~A82A,A!

2d~A2A8!E
0

A

dA1p~A1 ,A2A1!, ~B3!

whereu(A82A) is the step function ofA82A, and

p~A1 ,A2!5S 1

A1
1

1

A2
D 7/6F21S A1

A2
D 1/2

1S A2

A1
D 1/2G .

~B4!

The matrixL(A,A8) has the scaling symmetry

L~sA,sA8!5s27/6L~A,A8! ~B5!

for any s. This implies that

L~A,A8!5A27/6CS A8

A D , ~B6!

with

C~s!5L~1,s!. ~B7!

By Eqs. ~B7! and ~B3!, C(s)50 for s,1, andC(s)'s1/2

for s@1. It is straightforward to show that

E
0

`

dA8 L~A,A8!~A8!n5 f ~n!An21/6 ~B8!

and

E
0

`

dA An L~A,A8!5 f ~2n2 5
6 !~A8!n21/6, ~B9!

with

f ~n!5E
0

`

ds C~s!sn. ~B10!

As C(s);s1/2 for large s, f (n)→1` as n→2 3
2 from the

left. By Eq.~B6!, the fissional transport equation~B2! can be
rewritten as

]

]t
r~A,t !5

g

A7/6 E
0

`

dA8CS A

A8D r~A8,t !. ~B11!

Next, consider the moments

mn~ t !5E
0

`

dA Anr~A,t !. ~B12!

By Eqs.~B9!–~B12!, one obtains that

dmn~ t !

dt
5g f ~2n2 5

6 !mn21/6~ t !. ~B13!

Membrane area densityFA5m1(t) is a conserved quantity
Thus, by Eq.~B13! with n51,

f ~2 11
6 !50. ~B14!
An interesting consequence of Eq.~B14! is that the fissional
transport equation~B1! has a time-independent solution o
the form

r~A!;
1

A11/6 ~B15!

@see Eqs.~B2! and ~B8!#. Recall that, from the numerica
results in Sec. III, we saw such a behavior ofr ~see Fig. 7!,
but only as a transient effect in the evolution of the s
distribution. In fact,r of the form Eq.~B15! cannot be an
accessible distribution because the membrane area de
FA5m1 is divergent for such a distribution. Such a dive
gence can be removed by an upper cutoff in the integra
Eq. ~B12!, i.e., by a modified distribution of the form~B15!
for A,A(t), andr(A)'0 for A.A(t), whereA(t) as some
cutoff area scale. Such a modified distribution may evo
slowly and occupy a significant part of the transient duri
the fission-dominated evolution. Let us explore this feat
suggested by the numerical results of Sec. III. To proce
we make the change of variables

j5A1/6 ~B16!

and

r~A,t !5
f~j,t !

A11/6 5
f~j,t !

j11 . ~B17!

With this change, the fissional transport equation~B11! is
transformed into

]f~j,t !

]t
5

g

j E
0

` ds

s11/6 C~s!f~s1/6j,t !. ~B18!

Equation ~B18! has a simple time-independent solution
the form of a constant,f(j,t)5const, corresponding, by Eq
~B17!, to the steady solution~B15!. Furthermore, Eq.~B18!
is equivalent to

]f~j,t !

]t
5gE

0

` ds

s11/6 C~s!
f~s1/6j,t !2f~j,t !

j
,

~B19!

see Eqs.~B10! and ~B14!. By taking the limitj→0 in Eq.
~B19!, we obtain

]f~j,t !

]t U
j50

5g f S 2
5

3D ]f~j,t !

]j U
j50

. ~B20!

Let us consider the moments off(j,t):

Ma~ t !5E
0

`

dj jaf~j,t !. ~B21!

By Eqs.~B16!, ~B17!, and~B12!,

Ma~ t !5
1

6 E dA A11a/6 r~A,t !5
mn511a/6

6
. ~B22!

Thus, in particular,
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Ma50~ t !5
FA

6
, ~B23!

Ma526~ t !5
nv~ t !

6
, ~B24!

Ma53~ t !5p1/2FV~ t !. ~B25!

By Eqs.~B22! and ~B13!,

dMa~ t !

dt
5g f S 2

11

6
2

a

6 D Ma21 . ~B26!

In particular, fora50 we have

dM0~ t !

dt
5g f S 2

11

6 D M 21~ t !. ~B27!

Equations~B27! and~B14! would yield the~expected! result
dM0(t)/dt50 provided Ma5215mn55/6 is finite. By Eq.
~B21! with a521, this is the case iff(j,t)→0 asj→0, or,
by Eq. ~B17!, if r(A) diverges no stronger than 1/A11/6 as
A→0. Numerical results of Sec. III, Fig. 7, which indica
that r(A);1/A11/6 @i.e., thatf(j50,t) is a nonzero quan
tity#, thus show thatM 21 might be diverging. In these situ
ations it would be wrong to equate the right-hand side of
~B27! with zero. To discuss such a situation, let us consi
Eq. ~B26! in the limit a→0. The right-hand side of Eq
~B26! can be expanded in powers ofa as

dMa~ t !

dt
52gt

a

6
f 8S 2

11

6 D Ma21 ~B28!

to leading order ina. Furthermore, a partial integration o
Eq. ~B21! shows that

aMa21~ t !52E
0

`

dj ja
]f~j,t !

]j
~B29!

for any positive a. By Eq. ~B29!, lima→0@aMa21(t)#
5f(j50,t). Thus, by Eq.~B28!,

dMa50~ t !

dt
52

g

6
f 8S 2

11

6 Df~j50,t !. ~B30!

At first glance, Eq.~B30! violates conservation of the mem
brane area density. In fact, this equation is obtained by tr
ing j5A1/6 as a continuous variable on the intervalj.0. In
reality, however, A.Amin , so j.jmin5Amin

1/6 . Equation
~B30! gives the rate with which the vesicles withj.jmin
lose their membrane area density by producing
minimum-size vesicles withj5jmin . In fact, the fissional
production of the minimum size vesicles begins already
t50, even for the initial monodisperse distributionr(A)
5n0d(A2A0), for which f(j)5n0A0d(j2j0)56FAd(j
2j0), with j05A0

1/6. By a simple calculation using Eq
~B18!, we find that this monodisperse distribution first d
cays into a wedge-shaped intermediate distribution

f int'
12FA

j0
2 j ~B31a!
.
r

t-

e

t

-

for j!j0 , and

f int~j!50 ~B31b!

for j.j0 . This f int still has the sameM0 as the initial
monodisperse distribution. However, by Eqs.~B20! and
~B31a! we see that a nonzerof(j50) must develop in the
evolution that follows. By Eq.~B30!, this indicates onset of a
strong fissional production of vesicles withj5jmin . Eventu-
ally, all the vesicles would become minimum size vesicl
To qualitatively discuss how this happens, we use the
that the fissional equation~B18! has anexactsolution of the
form

f~j,t !5a1b@j1g f ~2 5
3 !t#, ~B32!

where a and b are constants@as can be verified by Eqs
~B10! and ~B14!#. For t50, one hasf5a1bj, which re-
duces~for a50 andb512FA /j0

2! to the abovef int , Eqs.
~B31a! and~B31b!, for the case ofinfinite j0 . This suggests
that forj!j(t), wherej(t) is the size of the largest vesicle
@j(t50)5j0#, one may approximate

f~j,t !'
12fA

j0
2 @j1g f ~2 5

3 !t#, ~B33a!

whereas

f~j,t !50 ~B33b!

for j.j(t). To find how the size of the largest vesiclesj(t)
evolves with time, one can use Eq.~B30! and insert into it
the approximate form off(j,t) in Eqs.~B33a! and ~B33b!.
After some algebra, one obtains

j~ t !'j02g f ~2 5
3 !t, ~B34!

or, asj5A1/6,

A~ t !5A0F12
t

teq
G6

, ~B35!

with

teq5
Amin

4/3

f ~2 5
3 !CG0

A0
1/6;R0

1/3. ~B36!

Thus, the equilibration is dominated by the fissional decay
vesicles, which occurs in afinite timeproportional toR0

1/3,
where R0 is the initial vesicle size. During this decay, b
Eqs.~B33!, ~B16!, and~B17!,

r~A,t !'
12FA

A0
1/3

A1/61g f ~2 5
3 !t

A11/6 ~B37!

for A,A(t), and r(A,t)50 for A.A(t). Equation~B37!
explains the transient behaviorr;A211/6 observed in the
numerical results discussed in Sec. III~see Fig. 7!. The
above results forr(A,t) and teq are consequences of th
particular form of the equilibrium vesicle distribution, Eq
~2.4! @which enters only the fissional part of the TE~2.1!#.
Thus, they reflect the length scale dependence of memb
bending and saddle splay rigidity on the vesicle size@13#, as
well as entropy of vesicle’s collective degrees of freedo
incorporated inreq in Eq. ~2.4! @5,6#.
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