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Nonequilibrium size distributions of fluid membrane vesicles
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Department of Physics, West Virginia University, Morgantown, West Virginia 26506
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We investigate nonequilibrium behavior of polydisperse ensembles of fluid membrane vesicles by means of
a diffusive Boltzmann transport equation that incorporates vesicle diffusion and reactions between vesicles.
This approach is used to study time evolutions of size distributions of initially monodisperse vesicle ensembles.
We investigate various nonequilibrium paths that ensembles of vesicles may follow during the equilibration
process. Depending on the initial size distribution of vesicles, the thermodynamic equilibrium may be reached
either via a fusional growth of vesicles, or via their fissional decay. In the former case, typical vesicle size
grows asR(t) ~tY? until it saturates to its equilibrium value, whereas in the latter case we find that vesicle size
decays in dinite timeproportional to[ R(0)]Y, whereR(0) is the initial vesicle size. The latter behavior is
related to the length scale dependence of membrane bending and saddle splay rigidity.
[S1063-651%97)03109-1

PACS numbes): 68.15+¢€, 05.40+], 82.70.Kj

[. INTRODUCTION ther via a fusional growth of vesicles, or via their fissional
decay. In the former case, typical vesicle size grows as
In recent years significant attention has been devoted t&(t)~t*2 until it saturates to its equilibrium value, whereas
the equilibrium statistical mechanics of fluid membraffds  in the latter case we find that vesicle sizes decay fimite
and their phasel2—8]. However, many interesting phenom- time proportional to[R(0)]Y3, where R(0) is the initial
ena involving membranes are nonequilibrium in nature. Avesicle size. The latter behavior is related to the length scale
technologically important example are liposomes, which aralependence of membrane bending and saddle splay rigidity
potential vehicles for transporting therapeutic and diagnosti¢13]. Here we study, primarily, the situations in which a
agentd§9-11]. They are vesicles formed by bilayers contain- liquidlike, dilute unilamellar vesicle phase is reached at long
ing amphiphilic substances such as phospholipids dispersdunes in the equilibriuni12]. We address also the situations
in water. Vesicles such as liposomes frequently hawa-  in which one goes from a monodisperse state of unilamellar
equilibrium size distributions that evolve due to reactionsvesicles in which the phosphopolipid amous®ceedsthe
between vesicles. During storage, these reactions cause sudsitical value for the transition, into a lamellar fluid mem-
sequent changes in the vesicles’ sizes and thus affect thdirane phase. Such a unilamellar vesicle state eventually
internal aqueus volumé¢‘encapsulated volume). On the evolves into a lamellar phager into long lived metastable
other side, irequilibrium, unilamellar vesicles may form iso- states of multilamellar vesicld44]).
tropic, liquidlike polydisperséroplet phasesin which poly- The layout of this paper is as follows. In Sec. Il we for-
dispersity properties have been recently investigated experimulate our transport equation and discuss its general proper-
mentally by Herveet al.[12], and theoreticallf5—8]. These ties. In Sec. Ill, we discuss various nonequilibrium paths to
are so-called entropically stabilized vesicles, with the stanthermodynamic equilibrium starting from an initially mono-
dard Helfrich-Evans membrane curvature free energy, disperse ensemble of vesicles. In Sec. IV we discuss our
results and related experimental work. Some important de-
_ %K ) — tails are discussed in the Appendices A and B.
F—f d E He+ kG
. IIl. TRANSPORT EQUATION FOR REACTING VESICLES
where H and G are, respectively, membrane mean and
Gaussian curvature, andand x are membrane bending and A dilute nonequilibrium polydisperse ensemble of nearly
saddle splay rigidity. Here we investigate various nonequispherical unilamellar vesicles can be described by a vesicle
librium paths to reach the thermodynamic equilibrium in densityp(A,x,t), such thap(A,x,t)dAdx is the number of
these vesicle phases starting from a nonequilibrium, monovesicles with are#=4mR? in the interval &,A+dA) con-
disperse distribution of vesicle sizes. We investigate nontained in a volume element®x. A vesicle of ared is free
equilibrium behavior of polydisperse ensembles of fluidto diffuse and undergo fusions with other vesicles or to split
membrane vesicles by means of a diffusive Boltzmann trangnto smaller vesicles. Thus, the vesicle ensemble is a
port equation that incorporates vesicle diffusion and reacdiffusion-reaction system where reactions are vesicle fusion
tions between vesicles. This approach is used to study timand fission processésee Fig. 1 preserving the total area of
evolutions of vesicle size distributions and their interestingthe vesicles(i.e., total amount of the membrane material
properties such as the internal aqueous, encapsulated vdtere we are primarily interested in dilute vesicle states
ume. We identify several types of possible nonequilibrium(“droplet gasses) in which the encapsulated volume frac-
behaviors. Depending on the initial size distribution oftion is much smaller than 1. Thus, the time evolution of
vesicles, the thermodynamic equilibrium may be reached eip(A,X,t) can be described by a diffusive Boltzmann trans-

; (1.9
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min
O |
whereagpeA)~0 for A<Ap,. HereAy,, is the area of the
/ /v minimum-size vesicles]. Dimensionless constafi in Eq.
(2.9 is
C=consx £ i exg — M 2.4)
kgT ksT | '
© @

where E(An,i,) =8mk+4mk is the curvature free energy of

/® / the minimum-size vesiclel6]. At low enoughT, for —2«
<k (as assumed hereafte€<1. The power-law prefactor
\ \ (A/Amn)*3in peq of Eq. (2.4) arisis from the dependence of

the membrane curvature rigidities and « on vesicle size
[13]. The prefactorA~%2 in Eq. (2.4) originates from the
entropy of vesicle’s collective mod¢s,6]. Agqin Eq. (2.4)

Mg, effectively, the area of the largest vesicles present in the
system. It is determined by the total amount of the membrane
material, i.e., total membrane area

FIG. 1. Reactions between vesicles corresponding to the ter
R, to Ry of the transport equatio(®2.1).

port equationTE) of the form
J
21 PAXD=D(A)Axp(AX,1) +Ralp) Auff d®x dA Ap(Ax,t) (2.9

T Ro(p) TRe(p) +Rulp), @D present in the system. Vesicle fusion and fission processes

where the first term is an ordinary diffusion term with the included in our TE(2.1) preserveA,, and drive the density
size dependent diffusion constant D(A) p(x,A,t) towards the equilibrium den_5|162.4) at long times.

— kg T/6m n(Al4m) Y2 according to the Einstein-Stokes law, We remark that the actual value At in Eq. (2.4) does not
with 7 the viscosity of the solvenR, to Ry in Eq.(2.1) are  explicitly enter the TE2.1) [see Eqs(2.3) and(2.4)].

reaction terms associated with the reactions in Figugions To close the transport theory, we now discuss the form of
(8 and (b), and fissiongc) and (d)]. If p(A,x,t) is slowly the reaction kerndl’ in Egs.(2.2). To this end, consider the

varying in space, these terms can be generally written in thB"0C€Ss in Fig. (&), represented by the rate in E@.23. The
form quantity I'(A;,A)p(A;)dA, is the inverse of the average

time t(A,,A) it takes for a vesicle of areA to encounter
% vesicles with areas in the interval{,A;+dA,) and fuse
Ra(p)= _zfo dA; T(AL,A)p(AL XD p(AX ), with one of them. Let us first estimate the number of these

(2.23 encountersN(t) during the time intervat. During an en-
co\L;mer, th?/z vesicles are as close #&+R;=(JA
A +VA)/(47) 4 Thus, N(t)=V(t)p(A;)dA;, whereV(t)
Ru(p)= fo dA; I'(AL, A=A p(AL XD p(A— A1), is the volume swept in space by a sphere of radusR;
(2.2b diffusing with the diffusion constantD(A,A;)=D(A)

+D(A,) (“relative” diffusion constant for the diffusion of

© A; in the reference frame comoving with). The volume
Re(p)=2 f dA; TI(A1,A)p(A+AL,x 1), (220 V(1) can be estimated a¥(t)~(4m/3)(R+Ry)3(t/ty),

0 where t;=(R+R,)%/2D(A,A;) (the time it takes for the

A sphere to diffuse over the distance equal to its radilisus,

Ry(p)=— f dA; II(A;,A—A)p(AXt). (2.20 N(t)~(R+R;)D(A,A)tp(A;)dA, is the number of the en-

0 counters of the vesicle of argawith vesicles with areas in

the interval @;,A;+dA;). If pssis the probability that an

Reaction kerneld” andII in Egs. (2.2) are related by the encounter between the vesicles leads to a fusion, the average
detailed balance between fusions in Figg)land fissions in  ime t(A.,A) it takes for a fusion to occur satisfies

1(c)_[.fu§ions in(b) e}nd fissions ir(_c)] in the thermodynamic puN(t(A;,A))~1. By using this, and’(A;,A)p(A,)dA,
equilibrium. This gives the condition =1K(A;,A), we find that T(A;,A)=~pndD(A,)
+D(A)](R;+R). By using here the Einstein-Stokes form

Peq(Al)PecKAz) .
IM(A;,A)=——F7F"""""T(A1,A)), 2.3 for D(A), we find
( 1 2) peq(A1+A2) ( 1 2) ( )
wherep{A) is the equilibrium density. For example, for the I'(AyA)~p kB_T - A 1/2+ Aj 1/2 06
entropically stabilizedsesicles|5,6] L fus ™ A, A ' '
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This equation completes our transport theory, H@sl) to  E,.  can be estimated from the standard Helfrich-Evans
(2.6). It describes dynamics of dilute ensembles of vesicleglastic model(1.1) yielding Epa35_477,<_if the passage
for which the encapsulated volume fraction, neck radius is much smaller than the vesicle §i. Thus,
L within the standard mode{1.1), Epase=4m|«| for «<O.
_ 312 However, as the typical neck radius is small for passages just
Dvix,H)= 3(4m)2 f dA ATp(AXD, (27 emerging from vesicle fusion, the standard curvature energy
model (1.1) should be corrected here by higher order terms
is small. We may thus study equilibration processes in whichin powers of curvaturelsl 6,17. These energy corrections are
the dilute equilibrium vesicle phase is reached at long timeslikely to be positive[17]. Thus Ess>47(«| for k<0. As
Moreover, as discussed in Sec. lll, we can also address irE,>E s, One arrives at the inequalifyy,> 4| [ for x<O0.
teresting situations in which one starts from a dilute,( By using this we establish ampper boundfor the reaction
<1) monodisperse state of unilamellar vesicles in which theconstantp;,s~exp(—E,/kgT) of the form pss< Pmax, With
phosphopolipid amounéexceedsthe critical value for the
transition into a lamellar fluid membrane phdde]. Such _ _
unilamellar vesicle states eventually evolve into the lamellar P~ X — 4|/ kgT) 29
phase(or into long lived metastable states of multilamellar,
vesicles. for k<0. , ,

Thus, we are here interested in situations in which the W& emphasize that the total membrane &248) is the
equilibrium state reached at long times is either the droplePnly conserved quantity. Other quantities, such as the num-
(dilute vesicle phase or the lamellar phase. This correspond®€r Of vesicles and the encapsulated volume, change due to
to the so-called “droplet regime” of the fluid membrane reactions betwgen vesmle;. We assume that these. reactions
phase diagrarfi7,8]. This regime occurs for the saddle-splay &r€ rare eventé.e., thatpy, is smal) so that the time inter-
(Gaussiap rigidity constant x in the range —2k<x< vals between them_ are long enough to aIIQW vesicles to re-
— 10, (7,8]. In the droplet regime, the cutoff area scalg, cover nearly spherical shapes by permeation of the solvent

in Eq. (2.4) reaches its maximum value through membranes. ,
Finally, we remark that the transport equati@al) can be
Amin put into a dimensionless, parameter-free form by introducing
(Aeq)max™ =37 (2.8  the dimensionless quantiteA=A/[A], p=p/[p], T
=t/[t], andX=x/[x], where[A]=A, [p]=CIA%2  [t]
at the transition from the droplet to the lamellar phEa@].  =Amd/Clo,  and  [X]=(Amn/Cpud™  here T

At this transition, the encapsulated volume fraction is of the= PrusksT/#. This representation is convenient for present-
order of one(close packing of sphergsin the droplet re- ing results obtained by numerically solving the transport
gime, the formation of passages between droplets is, gene@quation(2.1) [see Sec. Il and figures discussed thefey
ally, energetically disfavored. Likewise, formation of drop- Eq. (2.4),

lets with nonspherical, multiply connected topologies is

disfavored in the droplet regime. This regime involves ke TAY2 . Am(2K+K)
phases with simple membrane topologies such as the droplet [t]= COHSIXT (Prs) X T )
and the lamellar phase. On the other hand, beyond the B (2.10

present work is the so-called “passage regime,” which oc-

curs for the saddle-splay rigidity constartin the range . .
— 10,<%<0[7,8]. There passage formation and nonspheri-BY Using the upper boun.9) for the reaction constargl,s

cal membrane topologies are energetically favored. Thigne obtains from Eq(2.10 alower boundestimate for the

yields more complex phase equilibria involving, in addition ime scale(t] of the form[t]>[t]win, with

to the lamellar and droplet phase, complex states such as

infinite periodic minimal surfaces and sponge phases. kg TAY2 8k
Various complex processes involved during the fusion of [tTmin~ 2 XF{ K T)

two vesicles are all absorbed into a single reaction constant B

Pws iN EQ. (2.6). Membrane fusion has the character of a, )

nucleation process whose rate is limited by a nucleation ed©" <<0. Note that the time scalé ], doesnot depend on

ergy barrierE,, i.e., ppe~exp(—Ey/kgT). Fusion involves the value of the saddle-splay rigidiky.

formation of complexnonbilayerintermediates that eventu-

(2.11

aIIy yleld formation of a small pfi_lssaqe-atenOidal nEC)( IIl. EVOLUTION OF INITIALLY
connecting vegcle(sas r_e_cently rgwewed in Re_[f_15]). The MONODISPERSE VESICLES
actual nucleation transition statee., the transition saddle o _ _
point in the energy landscapis, most likely, a nonbilayer A. Characteristic concentrations of vesicles

intermediate state of the fusion. It is thus hard to simply Here we discuss evolution of a spatially uniform, initially

relate the energy barrigg, to common bilayer parameters monodisperse ensemble of vesicles. hgtbe the number
such as the elastic constamntsind <. Nonetheless, as mem- gensity of these vesicles that all, &t 0, initially have the

brane fusion eventually yields formation of a bilayer struc-same ared,. Thus
ture involving two vesicles connected by a small passage
with an energyE, .ss the inequalityE,> E s must apply. p(AX,)|i—o=Ngd(A—Ay). (3.1
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Here we will introduce several characteristic scales for the Acq ( D, )6/5
(38.7)

initial vesicle concentration,. The TE(2.1) will drive p to A
an equilibrium distribution of the forni2.4) with A, deter- min
mined by the conservation &, Eq. (2.5). This conserva-
tion law givesAg, through the equation

(DA,cIvc

Thus, for ®,>® 4 o, One has, in equilibrium, large en-
tropically stabilized vesicles with a broad, power-law distri-
bution of sizes in the range betweéy,, and A, [see Eq.
(I>A=n0AO:f dA ApedA) (3.2  (2.4]. For ®,>d4 o the encapsulated volume fraction
®y ¢qis anonlinearfunction of the membrane area density
(i.e., surfactant volume fraction as, by Eqg. (3.5, &y
~®8% in equilibrium. On the other hand, fob,<® A qc
6/5 two qualitatively different situations can emerge in equilib-
, (3.9 rium: (i) If ®p ce>Pa>DPp v, Whered,  corresponds
to the more common critical vesicle concentratjd8], one
has self-assembling of essentially monodisperse vesicles
with A=A,i,. Thus, in this range o, the volume frac-
tion occupied by vesicles is simply proportional to the sur-

(where®d, is membrane area per unit voluingielding

413\ 6/5
A = o Amln =A No
eq— C — Mo E

with

C
ngzAW§ (Ag) Y8, (3.3) factant volume fractionby~®, in equilibrium. (ii) If ®,
min <P, o there are no vesicles present in the equilibrium.

Rather, there one has isolated surfactant molec(desl,
maybe, their nonbilayer aggregates
In what follows, our primary focus will be on vesicle
D\ (t)= —1,7 j dA A¥%p(AL), (3.49 states that occur above the critical large vesicle concentra-
3(4) tion, ®,>®p o Only then one has, in thermodynamic
equilibrium, strongly polydisperse vesicle size distribution of
the power-law form sincee(A)~A~"%, for A between
Anin and A, [see Eq.(2.4]. We remark that the encapsu-
”u(t):J dA p(At), (3.4b lated volume fraction®, ;<1 throughout the fluidlike
vesicle phase, wherea, .~ 1 at the first order transition
from the vesicle to the lamellar pha§@,8]. Thus, by Eq.
(3.5), at the transition,

The volume fraction encapsulated by vesicles,

and the number of vesicles per unit volume,

evolve from their initial valuesb,(0)=[1/3(4m)?nyA3?
andn,(0)=ng, to their equilibrium values

P — & C3/8
v(®) =y, eq D p crit= No critho~ AVZ: (3.9
min
Aﬁfﬁ{b%
- ch whereas, by3.7) and(3.8), Aeg= (Acq) max=Amin/ C*'%. For
A“’ (NoAg)¥S a given in.itiaill vesicle sizé\o,_ pr_evious equations _defirieur
min 050 characteristic scales for thaitial density of vesiclesn,.
c They areng . in Eq. (3.7), ng in Eq. (3.3), ngq in EQ.
.\ 35 (3.9), andn, ¢4 in Eq. (3.6). Finally, as®,(0)<1, one has
:q)v(o)(n_f) , (3.5  No<Ngmax, Where
0
1
and No max™ AWE (39)
0

n,(e)= Ny.eq
is the fifth characteristic density scale fiog. The existence

1/6
6C Amin of several characteristic scales fgyimplies the existence of
Aﬁm Acq several types of equilibration behaviors discussed in the fol-

s lowing. In Fig. 2 we plot these five characteristic densities in
6C C the (Ap,ng) plane. Note that forAg>Ai,, one hash,
7 |1 —— (3.6 %o
A NoAGALE >n}>ng e Also note that forA<(Aeo)max A/ C3/4
[see Eq(2.8)], one hasg mac>Nocic>Ng in Fig. 2. For any
Above and hereafter, we assume that membrane area densffy< Nocit the final state is the equilibrium vesicle phase. On

(I)A NoAg is well above theeritical Iarge vesicle concentra- the other hand, fono in the rangeng ¢ic<No<Ng max: ini-

min

tion (clve), tially dilute vesicle ensembles transform, at long times, into
the equilibrium lamellar phase. In this case the encapsulated
® =N euAo~ C _ 3.7) volume fraction®,, grows, starting from an initial value
Acve™ T0CveR0 ™ AT smaller than 1, until it reaches the close packing lirhij

~1. At that time scale transformation into a multilamellar
This ensures thal.> A, note that, by Eq(3.3), vesicle state occur@s detailed below
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Amin (Aeq)max t
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FIG. 2. Regions of the three equilibration typesll, and I-1I) st
of an initially monodisperse ensemble of vesicles with the initial
concentrationny and areaAg; here[nv]:ClAﬁﬁ, whereas for 4%
(Acgmax S€€ EQ.(2.8). Type | is aboven, o4, type I-Il is between
Nyeq and ng, and type Il is betweemg and ng .. For ng n. 3|
<ng i, the final state is the dilute vesicle phase. On the other side,
for ng in the rangeng ¢ ir<Np<<Ngmax initially dilute vesicle en- 2
sembles transform, at long times, into the equilibrium lamellar 1k
phase.
0 ‘ L ! .
B. Type | equilibration 0 01 02 _03 04 05

t
Here the initial vesicle density is above its equilibrium

value, ng>n, ¢ Then, also n0>n3 (see Fig. 2 and, by FIG. 3. Example of the type | equilibration. Here and in the

Egs.(3.3) and(%.S),Ao<Aeq, and®(0)<®y o, Thus, the ~following figures, t=t/[t], ®y(t)=>y()/[Py], and ﬁgl(zt)

equilibration must be dominated by vesicle fusion processes " (/[N.]. with [1]=Agi/CT'o, [®y]=C, and[n,]=C/Agyp.

[R, andR, terms of the TE2.1)], which decreasaghe num- N this example Ay=Aq/Ap,=5, and n,(0)=no/[n,]=60,
ber density of vesicles,(t), and, as whereas the initial distribution is a narrow Gaussian centered at
v ) )

An.
AT+ AYP< (AL +A)? & s

increasethe encapsulated volume fractichy(t). This is
documented in Fig. 3, obtained by numerically solving the
TE (2.1 for the initial p in the form of a narrow Gaussian
centered af\; (see Fig. 4 at=0). We see from Fig. 3 that
®,(t) grows ast? until it saturates to its equilibrium value
®y ¢q at times longer than some equilibration time scale
teq. This growth can be understood analytically as, for
<tqq, fusional terms dominate in the TR.1), i.e.,

?
153

=0 5l =0.004

9
51 P(AD~Ra(p)+Rp(p). (3.10

As discussed in Appendix A, this equation has a self-similal
solution of the form

=

60

0 0 5 60 0o

Da
PAD=AmE

A 20 x 40
AD t)) (3.1 1 |
[with fdz zF*(z)=1], characterized by a growing vesicle . 5 _
area scale =0024 6=0.040
[
20 i 40

=
0
A(t)=A(0)+ D AT t, (3.12 ¢ ®x® @ 0 &
with I'o=ps,kgT/ 7, and A(0)~A,. Thus, fort<te,, the FIG. 4. For the example of the type | equilibration in Fig. 3, we
typical vesicle radius grows as plot p=p/[p] vs A=AlA, for various times in the interval @t

<0.040, early evolution. Here and in the following figuré¢g,|
R~[A(t)]Y2~t12, (3.13 =c/A¥Z.
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whereas - o
- =0.008
D\ (t)=constx P [ A(t)]V2~ 12 (3.19 =0
g o1 p 01
and
® 000017 10 5 o 1000 0‘00011 10 5 100 1000
— A 41 1o
n,(t) const><A(t) tT. (3.15 0
1=0.024
See Appendix A. Fort~t.,, the area scalé\(t) reaches p ol
Acgs Alteg ~Agq, Or, equivalently,®,(te) ~Py oq. This,
combined with Eqs(3.12 and (3.3, yields o000t T o
AB/5
min
teg= CONSX o, (D)5, (3.19 o oz
p ool
Thus,
0.0001
teq~(CI)A)1/5~(nOAO)1/5 (3.16) ! 0 5 100 1000
100 -~ 100
for ng<ng ¢rit, i.€., PA<Pp it, When the equilibrium state 1=0200 =0.240
reached at long times is the dilute unilamellar vesicle phase 5 o 5 o
(see Fig. 2 In terms of the dimensionless quantities dis-
cussed at the end of Sec. I, 00001
0.00\“] 0 1 100 1000 1 10 i 100 1000
e teq ~ N ’
teqzmzconstx(nOAo)l/S, (3.16") FIG. 5. The same as in Fig. 4 but in log-log scales and in the

broader time interval 8t<0.28.
here Ag=Ao/Amn, and Ty=no/[n,], with _ .
Vlce/rzs/_z 0=Ao/Amin, - and No=no/ln, ], with [n,} o yer peak ah=10A,,. Higher order peaksthird, etc)
on mtl%.e other hand, if the initial vesicle density are smeared and not observable here. In Fig. 4 we see also
' 0 the emerging peak a=0, which is produced by fissions.

= No,crits the equilibrigm state I t_he lamellar phase andFissions however, only weakly affect the dynamics of
vesicles will evolve via fusions until the encapsulated vol- ' ' . X ;
®\(t) and n,(t) for t<ty,. Figure 5 gives evolution of

ume fraction become®(1). Thus, the encapsulated volume p(A.{) over a broader range @& andt. In the log-log rep-

fraction ®\, grows, starting from an initial value smaller than : . o . .
1, until it reaches the close packing lindit,~ 1. At that time resentation of Fig. 5 it is manifest _that thg main changqs of
' . are in the range of largA wherep is relatively small. Still,

scale, concentrated unilamellar vesicles will transform intoSuch chanaes are sufficient to produce a significant variation
multilamellar long lived vesiclescorresponding to confocal 9 P 9

defects of a smectiéx phase, as suggested by Simons and of ®,(t) andn,(t) in Fig. 3 before equilibrium is reached.
Categ[14]. Thus, the equilibration time sca{éom dilute to

concentrated vesicle statecan be estimated from C. Type Il equilibration
D (teg~1, yielding, by Eqs(3.14 and(3.12, Here the initial vesicle densitpg is in the rangeng ¢c
L <ne<ng (then, alsony<n, ¢, see Fig. 2 Then, by Egs.
t = constk— (d,)"3 3.1 (3.3)_ _and_ (3.5, Ap>Aq, _and <I>V(O)>C_I>Vyeq_. Thus, the
ed Iy (P .19 equilibration must be dominated by vesicle fission processes

[R. andRy terms of the TE2.1)], which increase the num-
for ®p>®, . By EQs.(3.16 and(3.17), teg has a maxi-  per density of vesiclesn,(t), and, as Ai/2+ A§’2<(A1
mum for @ ,~® 4 o, i.€., at the first or_der transition from +A,)%2 decrease the encapsulated volume fractiyt).
the droplet to the lamellar phase at which This is documented in Fig. 6, obtained by numerically solv-
ing the TE(2.1) [p(A,t=0) is a Gaussian centered Ag].

312
(toq) max= Amin — % (3.19 We see thatd,(t) decreases, whereas the vesicle density
ey max COy o C n,(t) increases, until they saturate to their equilibrium values

) ) N ) ) ) at times longer than some equilibration time sdgle De-
An interesting feature of the equilibration time scalggin  als of this behavior can be understood analytically as, for
Egs. (3.16 and (3.17) is that they depend on the initial <t  fissional terms dominate in the TR.2), ie.
vesicle densityn, and areaA, only through their product o T
nvo=<I>A. Jd

Figures 4 and 5 give time evolution of the vesicle distri- 51 PIAD=Rc(p)+Ralp). (3.19
bution p(A,t) during the type | equilibratiorithe corre-
spondingd,,(t) andn,(t) are in Fig. 3. Figure 4 gives early By analyzing this equatiofsee Appendix B we find that an
evolution of p(A,t) starting from a Gaussian centered atinitially monodisperse size distribution gets replaced by a
Ao=5Anin- We see that fusions quickly produce another,transient strongly polydisperse distribution of the form
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4
3 -
Ov
2 -
1 L
0 | 1 | i ]
0 02 04 06 08 1
t
027
10
n, OlIf ol
P t=0.32
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FIG. 6. Example of the type Il equilibration. HeZQ,: 100, and
Nn,(0)=nq/[n,]=0.042, whereas the initial distribution is a narrow

Gaussian centered Ab. bending and saddle splay rigidity on the vesicle $iZ&, as

well as entropy of vesicle collective degrees of freedom in-
corporated inpeq, Eq.(4) [5,6]. In terms of the dimension-

1 | ities di d at the end of Sec. Il
_ 3.2 ess quantities discussed at the end of Sec. I, B2
P pTI (3.20 assumes the simple form
for A<A(t), andp=~0, for A>A(t). Such a transient behav- — ot -
ior of p(A,t) is documented also by the numerical solution teq=ﬁ=const><(Ao)1’6, (3.22")
of the TE(2.1); see Fig. 7. In Appendix B we find that the
time dependent cutoff area scalét) decays to zero as L~
W|th AOZAO /Amin .
6
A(t):AO[l_ t_ej ’ (3.2 D. Type I-ll equilibration
, Here the initial vesicle density, is betweemg andn,
with . : . : €4
(g <ng<n, eq; see Fig. 2. By numerically solving the TE
ﬁ{% (2.1), we obtain®d,,(t) andn,(t) in Fig. 8. Asny<<n, ¢q, the
teq= CONSK 1 AYe. (322  vesicle densityn,(t) increases until it saturates tg eq. In
0

this respect, this equilibration is similar to type Il equilibra-
tion. As there, this increase of (t) is produced here by the
fissional terms of the TE2.1). However, asng<nq here,
one has, by EQgs(3.9 and (3.5, Ag<Ag, and ®\(0)

teq (Ao) Yo~ (Rp) ™2 (3.22)  <®y g Thus, the encapsulated volume fractidr(t) in-

creases until it saturates @y ¢4 In this respect, this equili-

So, the equilibration is dominated by the fissional decay obration is similar to the type | equilibration. As there, this
vesicles, which occurs in finite time proportional toRé’3, increase ofb,/(t) is produced here by the fusional terms of
whereR; is the initial vesicle size, as detailed in Appendix the TE(2.1). From Fig. 8, we see that the fissional increase
B. The above transient form @f(A,t), Eqg.(3.20, as wellas  of n,(t) produces amvershootabove the equilibrium value,
the form ofteq in Eq. (3.22, are consequences of the par-yielding a maximum ofn,(t) at some characteristic time
ticular form of the equilibrium vesicle distributiope{A), scalet;. Fort<t,, the fission produced vesicles are small,
Eq. (2.4), which enters the fissional part of the TE1) due  and do not significantly affect the encapsulated volume frac-
to the detailed balance conditid®.3). Thus, Eqs(3.20 to  tion, which continuously increasdsee Fig. 8 due to fu-
(3.22 reflect the length scale dependence of membransions of the largest vesicles, which contribute mos®tp.

Thus, for the type Il equilibration, the equilibration time
scale behaves as
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19 - growth of vesiclegtype | equilibration, or by their fissional
decay (type Il equilibratior), or by a combination of both
(type I-1l equilibration. Here we studied, primarily, the situ-
ations in which a dilute, liquidlike dilute monolamellar
vesicle phase is reached at long times in the equilibrium. We
addressed also the situations in which one starts from a
monodisperse state of unilamellar vesicles in which the sur-
factant amount exceeds the critical value for the transition
into a lamellar fluid membrane phase. Such a dilute unila-
mellar vesicle state eventually evolves into a lamellar phase

13 w w : w : ; (or, in practice, into long lived metastable states of multila-
0 02 04 O.6~ 08 1 1.2 mellar vesicles
R t Vesicle size distributions were studied in more detail in
t the experiments of Hervet al, both in the dilute and in the
03l concentratedmultilamella) regimes[12]. Interestingly, the

dilute phase does not show behavior in agreement with the
equilibrium size distribution{2.4), which was rigorously de-
rived in the recent work of Morse and Milngé]. The dis-

ny crepancy between the theory and the experiment remains un-

02 resolved(see Ref[6] for a discussion of this problemin
brief, strongly polydisperse behavior of E@.4), with pg,
~A~®, for A betweenA,, andAy,, was not observed in
the experiments of Hervet al. Rather, the potentiah., ap-

01 ™02 04 06 08 1 12 pears to be only few times bigger than the obserdgg,

t and the size distribution behaves, qualitatively, as a mono-
disperse distribution throughout the dilute vesicle phase. For
FIG. 8. Example of the type I-II equilibration. Hefg=20 and ~ €xample, Herveet al. find ®,~®,, as in a monodisperse
1,(0)=1.6, whereas the initial distribution is a narrow Gaussianstate, rather tha@v~<1>?\’5 as in Eq.(3.5. Here we wish to
centered af\,. suggest that the size distribution they observed in the dilute
vesicle phase might not be the true equilibrium distribution.
Fusions, however, affect the number density of vesidgs In fact, whereas the self-assembling of vesicles with
significantly less. For example, after the overshoohjnat ~ ~Ani, may be a fast procegabove the critical vesicle con-
t=t, (Fig. 8 there is only a small decrease mf(t), which  centration, the subsequent growth of large vesicles wikh
is due to fusions of the largest vesicles in the tail of the~Aeqcan be avery slowprocess. This process must proceed
distribution. Thus, most of the production af is due to  Vvia vesicle fusions, i.e., through the type | equilibration dis-
fissions and it is practically over already at the fissional timecussed in Sec. Ill. Note that the typical time scale for various
scalet~t;~(Ar3/CI' o) AL®, as in the type Il equilibration, equilibration types i§t], Eq.(2.10 [see Eqs(3.16), (3.18),
Eq.(3.22. At this time scale, fusions still go on and increaseand (3.22)]. In Sec. Il we find thaf{t]>[t]min With [t]min
®y; see Fig. 8. Thus, thaltimate equilibration timeto,is ~ given by Eq.(2.1D (for «<0). For T=300K, Eq.(2.1])
determined by fusiong., is thus given by the fusional time Yields the practical estimate
scaleteq= (AS>/COT ) (@) Y5, as in type | equilibration, 5 s
EqQ.(3.16. Thist.yis larger thap the fi;sional time scaleas [t] i~ 1072 X kB_T) i rr) (8.22x 1010) </kaT,
t1 /teq~ (NG /Ng) "< 1 here. This applies fany<ng e when 7w 1100 N
the equilibrium state is the dilute vesicle phase. On the other (4.1
hand, forng>ng ., the type I-Il equilibration ends in the
phase of multilamellar vesiclésee Fig. 2 In this casdis
given by Eq.(3.17. Thus, in general, the dependence of the
equilibration time omng and A, is the same for type | and
type I-1l regimes.

Rmin

where n,, is the viscosity of water at 300 K ar®,;, is the
radius of the minimume-size vesicleR,,;,=~20 nm in the ex-
periments of Herveet al. [12]. Thus, for a moderately stiff
membrane, withk=kgT, Eqg. (4.1) would predict [t]
~10"s~100d. Herveet al. suggest an even biggek
=4kgT, as obtained by independent measurements on ori-
ented samples in the lamellar ph44&]. With such ax, Eq.

To summarize, we investigated nonequilibrium behaviord4.1) would yield a value of t] exceeding many orders in
of polydisperse ensembles of fluid membrane vesicles bynagnitude the age of the Universe. If so, fusions producing
means of a diffusive Boltzmann transport equation that indarge vesicles witlA~ A, starting from the initial vesicles
corporates vesicle diffusion and reactions between vesiclewvith A~A,,, would never occur on the experimental time
This approach is used to study time evolutions of size distriscale. The waiting time for the power-law distributipg,
butions of initially dilute, monodisperse ensembles of~A~7 (Amin<A<A) to develop is simply too long. Thus,
vesicles. We identified several types of possible nonequiliben the experimental time scale, the vesicle distribution re-
rium behaviors. Depending on the initial size distribution of mains practically monodisperse with~Ai,. In fact, this
vesicles, the equilibration is dominated either by a fusionatorresponds exactly to what Hereeal. observethroughout

IV. SUMMARY AND DISCUSSION
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their dilute vesicle phase. Thus, we believe that the diluteso that, by Eq(A4), F*(z) satisfies
vesicle state studied in R€f12] could be very far from the

true equilibrium state. This explains the difference between _2F*(2)-2 JF*(2)
the observations of these experiments and the theoretical pre-

dictions based on the equilibrium statistical mechanics. At

least, the above discussion suggests that one should be vdry (2) yields a self-similar solution of EqA1) of the form
careful in interpreting experimental data on membrane en-

sembles by using results of the equilibrium theory of fluctu- p(At)= ﬂ = (i) (A10)

=Ra(F*)+Ry(F*).  (A9)

ating surfaces. Nonequilibrium effects may dominate even in A(t)? A(t)
seemingly simple states such as the dilute vesicle state in ) ] ) ) )
which dynamics has been studied in this paper. For this solution, by Eq(A8) the typical vesicle sizeR
~A(t)Y?2 grows ast'? whereas, by(A10), (3.48, and
ACKNOWLEDGMENT (3.4,
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§ — 1 /2 %
APPENDIX A with ¢, =[1/3(27)Y3fdz Z/F*(z), and
Here we discuss the fusion-dominated diffusive Boltz- n,(t)=c, Pa ~t 1 (A12)
mann equation A(t)
d with c,=fdz F*(z). In terms of the “proper time”
71 P(AD=Ra(p)+Re(p), (A1)
(., @AFO_I DTt
which is of interest for understanding the type | behavior in T fodt At’) nj 1+ A(0) |’ (A13)
Sec. lll. To discuss Eq(Al), let us make the change of
variables Eqg. (Ad4) assumes the parameter-free form
(DA A (I)A &F(Z!T) &F(Z! T) = =~
p(A,t)—A(t)z F(A(t),t)—[A(t)]z F(z,t) (A2) +| —2F(z2,1) =z ———| =Ra(F) +Ra(F),
(A14)

and
whose 7~independent solution satisfies E@4). Equations
= i (A3) (A8)—(A12) explain numerical results we find in Sec. Il for
A(t)’ the type | behavior. They reflect general features of fusion-
dominated behaviors d§ there exists time-independent so-
Here A(t) is a time-dependent vesicle area scatebe de- |ution of Eq.(A14), i.e., Eq.(A9) has a solution foF*(2),
termined in the following This change transforms EGA1)  and(ii) this solution is a global attractda universal distri-

z

into bution shape functionfor all other solutions, e.g., initially
nearly monodisperse distributions. We checkégand(ii) by
dF(z,1) N dA(t) C2F(zt)-z IF(z,1) numerically solving Eq.(A14) for the initial distributions
at dt ' Jz having the form of a Gaussian peaked around a nonzero
_ _ We find that, for larger, F(z,7) approaches a limiting dis-
=@ lo[Ra(F)+Ra(F) ], (A4)  tribution F* (2). We find thatF* (z) has an exponential tail
With T'g= prukeT/ 7, and fztilglrgez, whereas it approaches a fin{t@nzer9g value as
Ra(F)= —ZJO dz [(z,,2)F(z;,HF(zt),  (A5) APPENDIX B

Here we discuss the fission-dominated diffusive Boltz-

~ z o~ mann equation
Ru(F)= | d2, T2y 2- 2)F(20 OF (2-22,0), (A0

0
~ — p(A,)=Ra(p) + Ry(p), (B1)
with T'(z;,2) =2+ (z/2,)Y?+ (z,/12) 2. Equation(A4) has a at : "

time-ind dent solutioR(z,t)=F*(2), ided L . . .
Ime-independent solutioR(z,t) (2), provide which is of interest for understanding the type Il equilibra-

dA(t) tion behavior. EquatiofiB1) can be rewritten as
g~ Palo (A7)

& oo
o PAD=Y fo dA” L(A,A")p(A",1), (B2)

A(t)=A(0)+ DI, (A8)  with y=CF0/Aﬁq’%, and
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L(AA)=26(A’—A) (A’ —A,A)
A
_5(A_A,)J’O dA17T(Al,A_A1), (BS)

where §(A’ —A) is the step function oA’ — A, and

1 716 Al 1/2 A2 1/2
m(AL,Ay) = ata 12tE) Tl }
(B4)
The matrixL(A,A’) has the scaling symmetry
L(sAsA)=s "L(AA") (B5)
for anys. This implies that
L(A,A’)=A7’6\II(AK,), (B6)
with
T(s)=L(1s). (B7)

By Egs.(B7) and (B3), ¥(s)=0 for s<1, and¥(s)~s'?
for s>1. It is straightforward to show that

f;dA' L(A,A")(A)"=f(n)A"~ 16 (B8)
and
J?dA A"L(AA)=f(—n—23)(A")"" Y8 (B9
with
f(n)=f:dsx1f(s)s“. (B10)

As ¥ (s)~s? for larges, f(n)—+% asn— — 3 from the
left. By Eqg.(B6), the fissional transport equati¢B2) can be
rewritten as

’ = e [Canw| &) par
EP(A,U—AWGL AW\ 57| p(ALD). (B11)

Next, consider the moments

mn(t)zf dA A'p(At). (B12)
0
By Egs.(B9)—(B12), one obtains that
dm,(t)
g = Y= ma_ue(t). (B13

Membrane area densith ,=m;(t) is a conserved quantity.
Thus, by Eq.(B13) with n=1,

f(—%)=0. (B14)
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An interesting consequence of E&14) is that the fissional
transport equatioriBl) has a time-independent solution of
the form

1
p(A)~ ATI (B15)

[see Egs(B2) and (B8)]. Recall that, from the numerical
results in Sec. lll, we saw such a behaviorpofsee Fig. 7,

but only as a transient effect in the evolution of the size
distribution. In fact,p of the form Eq.(B15) cannot be an
accessible distribution because the membrane area density
®,=m, is divergent for such a distribution. Such a diver-
gence can be removed by an upper cutoff in the integral in
Eq. (B12), i.e., by a modified distribution of the foriB15)

for A<A(t), andp(A)~0 for A>A(t), whereA(t) as some
cutoff area scale. Such a modified distribution may evolve
slowly and occupy a significant part of the transient during
the fission-dominated evolution. Let us explore this feature
suggested by the numerical results of Sec. Ill. To proceed,
we make the change of variables

E=AS (B16)
and
t t

With this change, the fissional transport equati®i1) is
transformed into

Ip(£,t = d
¢¢(9§ ):§ . STSG\P(S)MSUG&U. (B18)

Equation(B18) has a simple time-independent solution in
the form of a constant(&,t) = const, corresponding, by Eq.
(B17), to the steady solutiofB15). Furthermore, Eq(B18)

is equivalent to

Ip(Et) f ds B(sV%,1) — p(£1)
=7 ¢ )

a7, sV

(B19)

see Eqs(B10) and (B14). By taking the limité—0 in Eq.
(B19), we obtain

dp(&,1) _ (_ §)ﬁ¢(§,t)
e " =3¢ o (B20)
Let us consider the moments @f( &,t):
ML= [ de gen. (B21)
0
By Egs.(B16), (B17), and(B12),
Ma(t):% f dA AL 5 (A t)= m. (B22)

Thus, in particular,
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O for £<¢y, and
Ma—o(t)=—, (B23)
6 bim(£)=0 (B31b)
N, (1) for £€>¢&,. This ¢y still has the sameéviy as the initial
Ma=—6()=—5—, (B24)  monodisperse distribution. However, by Eq®20) and
(B31a we see that a nonzerd(£=0) must develop in the
M, _5(t) = 712D(1). (B25)  evolution that follows. By Eq(B30), this indicates onset of a
strong fissional production of vesicles wigl &.,,i,. Eventu-
By Egs.(B22) and(B13), ally, all the vesicles would become minimum size vesicles.

To qualitatively discuss how this happens, we use the fact

dM,(t) 11 « that the fissional equatiof18) has anexactsolution of the
dt yf( 6 6) Ma-1 B20  form
In particular, fora=0 we have (& t)=a+b[é+yf(— 3], (B32
dMy(t) 11 wherea and b are constant$as can be verified by Egs.
T =yf| — g)'\/‘l(t)- (B27) (B10) and (B14)]. Fort=0, one hasp=a+bé&, which re-

duces(for a=0 andb=12d,/£3) to the above;y, Egs.

Equations(B27) and (B14) would yield the(expectediresult ~ (B318 and(B31b), for the case ofnfinite £,. This suggests
dM,(t)/dt=0 provided M,__;=m,_sj is finite. By Eq. that for §<£(t), whereé(t) is the_ size of the largest vesicles
(B21) with a= —1, this is the case i(&,t)—0 asé¢—0, or, L[&(t=0)=&], one may approximate

by Eq. (B17), if p(A) diverges no stronger thanA#/® as 126
A—0. Numerical results of Sec. Ill, Fig. 7, which indicate ¢(§,t)w—rA [+ yf(—3)t], (B333
that p(A)~ /A [i.e., thatp(£€=0}) is a nonzero quan- &0

tity ], thus show thaM _; might be diverging. In these situ- \ynereas

ations it would be wrong to equate the right-hand side of Eq.

(B27) with zero. To discuss such a situation, let us consider d(&,1)=0 (B33b
Eqg. (B26) in the limit «—0. The right-hand side of Eq.

(B26) can be expanded in powers afas for £>¢&(t). To find how the size of the largest vesiclgg)

evolves with time, one can use E@®30) and insert into it

dM () a 1 the approximate form o#(&,t) in Egs. (B339 and (B33h).
G- M3 f'( ~ % | Ma2 (B28)  After some algebra, one obtains
t)~&—yf(—$t, B34
to leading order ine. Furthermore, a partial integration of f=&=yH(=3) (B34
Eq. (B21) shows that or, asé=AS,
- IP(£t t]°
aMa_l(t)z—f dé &« P (B29) A(t)=Ao[l—t—J : (B39
0 c9§ e
for any positive . By Eq. (B29), lim,_o[aM,_1(1)] with
— — 4/3
=¢(£=04t). Thus, by Eq(B28), . AR A6 3 ©36
eq 5 0 0 -
dM,_o(t) y 11 f(=3)CI'
—q — sl glHE=0n. (B3O
t 6 6 Thus, the equilibration is dominated by the fissional decay of

vesicles, which occurs in finite time proportional toRé’3,

At first glance, Eq(B30) violates conservation of the mem- : et ) . X .
9 a(B30) E/here Ry is the initial vesicle size. During this decay, by
q

brane area density. In fact, this equation is obtained by treal

ing £&=AY® as a continuous variable on the inter¢at0. In

reality, however, A>A.,, SO &> gmm:A}Y{ﬁ]. Equation 120, AV64 yf(— 9t

(B30) gives the rate with which the vesicles with> &, p(A)~ 15 TH— (B37)

lose their membrane area density by producing the Ao A

minimum-size vesicles withké=¢.,,. In fact, the fissional for A<A(t), and p(A,t)=0 for A>A(t). Equation(B37)

production of the minimum size vesicles begins already a&xplains thé transier;t behavigr~ A~ 116 observed in the

t=0, even for the in!tial monodisperse distributigr{A) numerical results discussed in Sec. (Hee Fig. 7. The

=No(A—Ao), forl,‘éVh'Ch P(E)=NoAcd(£—£0) =6PaS(E  gpove results fop(A,t) and te, are consequences of the

—&o), with £&=A,". By a simple calculation using EQ. paricylar form of the equilibrium vesicle distribution, Eq.

(818),' we find that this mo_nodlsperge dlstrlputhn first de- (2.4) [which enters only the fissional part of the TE1)].

cays into a wedge-shaped intermediate distribution Thus, they reflect the length scale dependence of membrane

12P bending and saddle splay rigidity on the vesicle $iZ8, as

_ZA & (B319 well as entropy of vesicle’s collective degrees of freedom
&0 incorporated irpeq in Eq. (2.4 [5,6].

s.(B33), (B16), and(B17),

Dine~
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